Industrial Scale Production of Celestial Body Simulants, Phase II

Completed Technology Project (2011 - 2013)

Project Introduction

The technical objectives of this program are to develop a cost-effective process to deliver Celestial body simulants for the foreseeable future. Specifically, the technical objectives of this project are: \(\) Deliver 3 metric tons of a lunar Mare simulant. A portion of the simulant will be bulk, excavation-grade that is compatible to the now depleted JSC-1a. Another portion of the simulant will be a technical grade simulant that has the proper amounts of glass and agglutinates included. Finally, a titanium-rich Mare will be produced. The correct concentrations of titanium are critical for mechanical and chemical process development and testing. \(\) After the 3 metric tons of Mare simulant; be able to produce bulk simulant at \$10,000 per ton. This will be 30% better than the NASA cost target specified in the original solicitation. 1 ZAP will deliver 1 metric ton of research grade Highlands type lunar simulant. \(\frac{1}{2}\) ZAP will deliver a documented process for producing low-cost, bulk mare simulants. After phase 2 project, estimated cost is: \$5,000 per ton. \forall ZAP will test and demonstrate the applicability of the manufacturing process to produce other Celestial body materials. Examples include: Asteroid, Mars, probe reference samples, and dark glass.

Primary U.S. Work Locations and Key Partners

Industrial Scale Production of Celestial Body Simulants, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Industrial Scale Production of Celestial Body Simulants, Phase II

Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
Zybek Advanced	Lead	Industry	Boulder,
Products, Inc.	Organization		Colorado
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama

Primary U.S. Work Locations	
Alabama	Colorado

Project Transitions

O

June 2011: Project Start

May 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139111)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Zybek Advanced Products, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Michael Weinstein

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Industrial Scale Production of Celestial Body Simulants, Phase II

Completed Technology Project (2011 - 2013)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - □ TX07.2.3 Surface Construction and Assembly

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

